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Thermogalvanic measurement of low partial pressures of 
oxygen with oxygen ion conductors: 
a disregarded possibility ? 
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The thermogalvanic e.m.f, of 02- conducting solid oxide cells can be used to detect small electronic 
contributions to the oxide conductivity, as a function of the ambient 02 partial pressure. When this 
contribution is negligible, the thermocell can serve as an 'oxygen gauge'. Gas-tightness of the oxide 
specimen is not required, in contrast to more conventional (concentration cell) techniques. 

List of symbols 
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Q* 
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R , T , F  

potential (V) 
partial pressure (atm) 
entropy (Jr K -1 mole-') 
standard entropy (at 1 atm) 
transported entropy 
partial (ionic) entropy 
ionic heat of transport (J mole-') 
Seebeck coefficient or thermo (galvanic) 
power (V K -I) 
usual significance 

In a current investigation on 02- conducting 
6-BizO3 [1,2] and a number of its 6-stabilized 
mixed oxide compounds including Y 2 0 3  [3-6] 
and oxides of rare earth metals (Tb-Lu), thermo- 
galvanic Seebeck coefficients were measured with 
cells of the type: 

02 + N2, PtlS-(Bi203),_x(M203)x tPt, 02 + N2. 
(T+ A T) (T) 

(i) 

The experimental set-up has been described earlier 
[7] and a more detailed account will be published 
elsewhere [8]. Some typical results are shown in 
Figs. i and 2, referring to pure 6-Bi203 and the 
(Y203)o.3o compound, respectively. Slowly flow- 
ing O2[N 2 mixtures of various 02 partial pressures 
were led through the cells. As expected from 
entropy considerations and similar to various 
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ZrO2-CaO-Y203 systems [9, 10], all Seebeck 
coefficients in the 02 partial pressure range 
1-10-4atm are negative (hotter electrode has more 
negative potential). For an assumed transport 
number t(O 2-) = 1, i.e., no electronic conduction 
and absence of S6ret effects in the mixed oxide, 
the Seebeck coefficient for the reversible electrode 
reaction: 

1/2 O2(g) + 2e(Pt) -+ 02-(s) 

is given by [9]: 

lira AE/AT = e(O2/O 2-) = ( l /F)  , o [-~s (02) A T ~  0 

+ �88 In p(O2) --S(e, Pt) + �89 2-) 

+ Q*(O2-)/2T] (2) 

This can be written as: 

e(Oz/O 2-) = e~ + 2.303 R/4Flog p(02) 

(3) 

where 6 ~ (T) includes all temperature-dependent 
terms in Equation 2. Briefly summarized, except 
for the heat of transport term, the other terms are 
either known from tabulations [S~ S(e, Pt)] 
[11, 12] or can be estimated [S(O2-)] using 
entropy data for the oxides in question and 
accounting for cationic and anionic mass ratios, 
compare Pitzer's approach [13]. Thus the kinetic- 
ally important heat of transport Q* (02-) can, in 
principle, be found from the observed e~ e.g. 
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by plotting e~ versus 1/T. However, for 
strongly oxygen deficient lattices such as the 
stabilized zirconias and thorias, and correspond- 
ingly for some cationic (Ag +) 'superconductors', 
Q*(ion) is very small. Accordingly, in these cases 
e~ has been found to be almost constant in the 
relevant (ionic) T range [9, 10, 14, 15]. The present 
data confirm this fact. In view of experimental 
errors, uncertainties in estimated partial ionic 
entropies S and the occasional neglect of terms 
such as S(e, Pt) in various calculations, it seems 
risky to correlate the small Q* (ion) data thus 
found with corresponding activation energies for 
electrolytic ('superionic') conduction. For the 
stabilized zirconias, the latter are typically in the 
order 0.8-1.5 eV [ 16 ], in disagreement with the 
slight temperature dependency of e ~ For ~-Bi203 
(Fig. 1), Q*(O 2-) cannot be found with any pre- 
cision whereas AH (ionic conduction) is reasonably 
well known: 0.30 eV [2]. 

From a practical viewpoint Equation 3 suggests 
the use of (oxidic) thermo-galvanic cells as a check 
on the absence of significant electronic conduction 
and, if so, their use as a 'p(O~) meter' (oxygen 
gauge).? The analogy with the conventionally used 
p (O2) isothermal concentration cell technique is 
obvious, but a major advantage of the former 
method is that gas tightness requirements play no 
role (except for cell enclosure) and that mechanical 
properties of the electrolyte are not very critical. 

Since e ~ (T) ~ constant, accurate AT control is the 
main demand over a wide T range. Dead space of 
the cell should be small. Limitations for 6-Bi203 
based oxides become clear from Figs. 1 and 2. The 
pure 8-Bi203 phase has a rather narrow T range 
(thermodynamically stable from m.p. 824 ~ C 
down to 6-~ transition at 729 ~ C, with recta-stable 
extension mostly down to about 650 ~ C), but 
more disadvantageous is the onset of electronic 
conduction at p(O2) < 2 x 10-3atm. 

The yttria-stabilized specimen operates purely 
'ionicly' over a much wider T and p (02) range. No 
S6ret effects were observed and response of the 
e.m.f, to p(O2) variations was rapid: typically 
< 15 s. The low temperature limit is most prob- 
ably caused by failures in reversibility of the Pt 
electrodes (no efforts were made to optimize their 
porosity). It is noteworthy that the measured e ~ 
values (-- 285 -+ 5/~V K -I) for both specimens are 
the same. Based upon a vacant site concentration 
of 25% (2 02- unoccupied per 8 sites in the dis- 
ordered fluorite unit cell), e ~ appears to fall quite 
reasonably on the extrapolated graph of Pizzini 
et al. [10, Fig. 3], where e ~ for various stabilized 
zirconias has been plotted as a function of oxygen 
vacancy concentration. The location of the 
'plateaux' in Figs. 1 and 2 is in fair accordance 
(-+ 5%) with the 49.6 log p(O2) #V K -1 prediction 
of Equation 3. It must be noted that in an absolute 
sense, the lower p(O2) limit for the 6-Bi203 based 
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1 This suggestion, pertaining to the  use of  calcia-stabilized 
zirconias, was made by Pizzini and Bianchi in 1973 [17] 
but  no further developments  have been reported. 

6~Hq 

Fig. 1. Corrected Seebeck coefficients 
e(p, T) of pure 6-Bi~O 3 in various O~ + N 2 
atmospheres.  The rmodynamic  transi t ion 
temperatures  are indicated bu t  there is a 
metastable extension of  the 6-phase in cool- 
ing direction down to ~ 650 ~ C. Electronic 
contr ibut ions  are observable for p (02) < 
2 X 10-3atm.  The  e values have been cor- 
rected for the  contr ibut ion o f  S(e, P t ) /F  = 
1 8 # V  K -1 (see Equat ion 2), i.e. measured 
values are 18~V K -~ more  negative. 
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oxides is set by  the rmodynamic  stabili ty of  the 

Bi 3+ ions with regard to metal  format ion .  F rom 

Takahashi 's  data [6] on  the stabil i ty of  ( B i 2 0 3 ) o . 7 3  

(Y2Oa)o.27 this is calculated as: 

log p ( Q ) ( a t m )  = - -  20.12 • 103/T 

+ 9.80 (--  13.3 at 600 ~ C). 

Above this l imit  however,  either electronic con- 

duc t ion  or irreversibility of  the electrodes may  

cause unrel iable measurements  in flowing gases 

which,  on  the other  hand ,  will seldom conta in  

less than  0 .1 -1  ppm 02 . 
Zirconia and thoria-based oxides are stable in  

reducing atmospheres,  too,  and the same thermo- 
galvanic technique can be applied for p(H2) or 

p (CO)  measurement  in  H2 0  or C02 buffered 
mixtures .  Final ly mol t en  carbonates in a paste 

form [18] allow thermogalvanic detec t ion and 

measurement  of  bo th  p (02) and p ( C Q ) ,  the 
relevant expression being:  

e(02,  C02) = e ~ + R / 4 F l n  p ( 0 2 )  

+ R / 2 F l n  p (C02) 

where e ~ has an almost cons tant  value o f - -  1.12 

mV K -1 for various L i - N a - K  mixtures  in the 

tempera ture  range 5 5 0 - 8 0 0  ~ C, and negligible 
S6ret effects. 

Fig. 2. e(p, T) of 6-stabilized (Bi203)o.7o 
(Y203)0.3o in various O: + N 2 atmospheres. 
Breakdown of e below 490-450 ~ C is most 
probably caused by increasing irreversibility 
of the Pt/O 2 electrodes at decreasing p and 
T. Here, the possible use as an oxygen guage 
is obvious. The e values have been corrected 
for the contribution of S(e, Pt)/F = 18 
#V K -1 (see Equation 2), i.e. measured 
values are 18pV K -1 more negative. 
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