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Thermogalvanic measurement of low partial pressures of
oxygen with oxygen ion conductors:

a disregarded possibility?
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The thermogalvanic e.m.f. of 02~ conducting solid oxide cells can be used to detect small electronic
contributions to the oxide conductivity, as a function of the ambient O, partial pressure, When this
contribution is negligible, the thermocell can serve as an ‘oxygen gauge’. Gas-tightness of the oxide
specimen is not required, in contrast to more conventional (concentration cell) techniques.
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transported entropy

partial (ionic) entropy

ionic heat of transport (J mole™)
Seebeck coefficient or thermo (galvanic)
power (VK™)

usual significance

*

NQQMIWC?DDJHG Iy

R, T F

In a current investigation on 0>~ conducting
8-Bi, 05 [1, 2] and a number of its 5-stabilized
mixed oxide compounds including Y, 05 [3-6]
and oxides of rare earth metals (Tb—Lu), thermo-
galvanic Seebeck coefficients were measured with
cells of the type:

0, + Ny, Pt|8+(Bi;03), (M, 05), IPt, 0, + N,.
(T+AT) (1)
)

The experimental set-up has been described earlier
[7] and a more detailed account will be published
elsewhere {8]. Some typical results are shown in
Figs. 1 and 2, referring to pure §-Bi,O; and the
(Y;03)030 compound, respectively. Slowly flow-
ing O,/N, mixtures of various O, partial pressures
were led through the cells. As expected from
entropy considerations and similar to various
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Zr0,~Ca0-Y,0; systems [9, 10}, all Seebeck
coefficients in the O, partial pressure range
1-10"*atm are negative (hotter electrode has more
negative potential). For an assumed transport
number t(0%7) =1, i.e., no electronic conduction
and absence of Séret effects in the mixed oxide,
the Seebeck coefficient for the reversible electrode
reaction:

1/2 04(g) + 2e(Pt) > O*(s)
is given by [9]:
Adm AE/AT = €(0,/0%) = (1/F) [-35°(0y

+ 4R In p(0,) — S(e, Pt) + 15(0%)
+0%(0%)/21]
This can be written as:
€(0,/0%) = €%(T) + 2.303 R/4F log p(0,)
3)

where €°(T) includes all temperature-dependent
terms in Equation 2. Briefly summarized, except
for the heat of transport term, the other terms are
either known from tabulations [S°(0,), S(e, Pt)]
[11, 12] or can be estimated [S(0?)] using
entropy data for the oxides in question and
accounting for cationic and anionic mass ratios,
compare Pitzer’s approach [13]. Thus the kinetic-
ally important heat of transport @*(0%) can, in
principle, be found from the observed €°(T), e.g.
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by plotting €%(T") versus 1/7. However, for
strongly oxygen deficient lattices such as the
stabilized zirconias and thorias, and correspond-
ingly for some cationic (Ag") ‘superconductors’,
Q% (ion) is very small. Accordingly, in these cases
€%(T") has been found to be almost constant in the
relevant (ionic) T range [9, 10, 14, 15]. The present
data confirm this fact. In view of experimental
errors, uncertainties in estimated partial ionic
entropies S and the occasional neglect of terms
such as S(e, Pt) in various calculations, it seems
risky to correlate the small O™ (ion) data thus
found with corresponding activation energies for
electrolytic (‘superionic”) conduction. For the
stabilized zirconias, the latter are typically in the
order 0.8-1.5eV [16], in disagreement with the
slight temperature dependency of €°. For §-Bi,03
(Fig. 1), Q*(0%") cannot be found with any pre-
cision whereas AH (ionic conduction) is reasonably
well known: 0.30eV [2].

From a practical viewpoint Equation 3 suggests
the use of (oxidic) thermo-galvanic cells as a check
on the absence of significant electronic conduction
and, if so, their use as a ‘p(0,) meter’ (oxygen
gauge).T The analogy with the conventionally used
p(0,) isothermal concentration cell technique is
obvious, but a major advantage of the former
method is that gas tightness requirements play no
role (except for cell enclosure) and that mechanical
properties of the electrolyte are not very critical.

Since €°(T) ~ constant, accurate AT control is the
main demand over a wide 7 range. Dead space of
the cell should be small. Limitations for 8-Bi, O3
based oxides become clear from Figs. 1 and 2. The
pure 8-Bi, O3 phase has a rather narrow T range
(thermodynamically stable from m.p. 824° C
down to 8-« transition at 729° C, with meta-stable
extension mostly down to about 650° C), but
more disadvantageous is the onset of electronic
conduction at p(0,) <2 x 1073 atm.

The yttria-stabilized specimen operates purely
‘ionicly’ over a much wider T and p(O,) range. No
Séret effects were observed and response of the
e.m.f. to p(0,) variations was rapid: typically
<15s. The low temperature limit is most prob-
ably caused by failures in reversibility of the Pt
electrodes (no efforts were made to optimize their
porosity). It is noteworthy that the measured €°
values (— 285 + 5 uV K™) for both specimens are
the same. Based upon a vacant site concentration
of 25% (2 O unoccupied per 8 sites in the dis-
ordered fluorite unit cell), €® appears to fall quite
reasonably on the extrapolated graph of Pizzini
et al. [10, Fig. 3], where €° for various stabilized
zirconias has been plotted as a function of oxygen
vacancy concentration. The location of the
‘plateaux’ in Figs. 1 and 2 is in fair accordance
(% 5%) with the 49.6 log p(0,) uV K™! prediction
of Equation 3. It must be noted that in an absolute
sense, the lower p(0,) limit for the 6-Bi, 03 based
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Fig. 1. Corrected Seebeck coefficients

e(p, T) of pure 5-Bi, 0, in various O, + N,
atmospheres. Thermodynamic transition
temperatures are indicated but there is a
metastable extension of the §-phase in cool-
ing direction down to ~ 650° C. Electronic
contributions are observable for p (0,) <

2 X107 3atm. The e values have been cor-
rected for the contribution of S(e, Pt)/F =

650 700 750

T(C)

T This suggestion, pertaining to the use of calcia-stabilized
zirconias, was made by Pizzini and Bianchi in 1973 [17]
but no further developments have been reported.

18uV K™ (see Equation 2), i.c. measured
values are 18 uV K™! more negative.
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oxides is set by thermodynamic stability of the References

Bi** ions with regard to metal formation. From
Takahashi’s data [6] on the stability of (Bi;O3)q13
(Y,03)4 this is calculated as:

log p(0,)(atm) = —20.12 x10°/T
+9.80 (— 13.3 at 600° C).

Above this limit however, either electronic con-
duction or irreversibility of the electrodes may
cause unreliable measurements in flowing gases
which, on the other hand, will seldom contain
less than 0.1-1 ppm O, .

Zirconia and thoria-based oxides are stable in
reducing atmospheres, too, and the same thermo-
galvanic technique can be applied for p(H,) or
p(CO) measurement in H,O or CO, buffered
mixtures. Finally molten carbonates in a paste
form [18] allow thermogalvanic detection and
measurement of both p(0,) and p(CO,), the
relevant expression being:

6(02, C02) = EO + R/4F In p(02)
+ R/2F1n p(CO,)

where €° has an almost constant value of — 1.12
mV K™ for various Li-Na—K mixtures in the
temperature range 550-800° C, and negligible
Soret effects.
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